If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+14x+370=0
a = -16; b = 14; c = +370;
Δ = b2-4ac
Δ = 142-4·(-16)·370
Δ = 23876
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{23876}=\sqrt{4*5969}=\sqrt{4}*\sqrt{5969}=2\sqrt{5969}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{5969}}{2*-16}=\frac{-14-2\sqrt{5969}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{5969}}{2*-16}=\frac{-14+2\sqrt{5969}}{-32} $
| x–7=10 | | 2x+x=144 | | 3(x-5)+2(x-3)=5 | | 10^x=22 | | 2/3(x)+4/3=-2/3 | | 4(4-5a)+6=162 | | X+(20x/100)=80 | | 6(w–5)–3w=12 | | -3(2a+4)=8 | | 5x^2-4(x^2-2x+1)-5=0 | | 2y+9/2=26/3-3y | | X+(2x-4)+44=180 | | 4(3x—11)+23=5x-14 | | (8n+9)+10=4 | | x2-x-20=x2-16 | | (x+2)(x+3)=(x+2)(x-4)+20 | | 2(4x−4)=8+4x+4 | | 0=3x^2-x^2+2x^2+1 | | -28t+21-14=30+12t-42 | | 6x-15=12-12x | | 2/3x+6=7/6x | | 25=-5+5z | | 4(a+5)=-40 | | 6x=40-8x | | 1x+1/2x+7=3/8 | | 10r-7=17+6r | | 0=(3x-3)+x | | 1/2=(3x-3)+x | | 2=(3x-3)+x | | 5(m-3)=10 | | 5(x+4)=4(x-8) | | 5+(p+3)-3+(2p-3)=9 |